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Abstract. By using properties of the Sturm sequences related to tridiagonal matrices we
describe a very efficient algorithm to determine the density of resonance states based on the
stabilization method.

In a recent paper Mandelshtaat al [1] calculated the density of resonance states by
enclosing the system in a box of length, and studying the behaviour of the energy
eigenvaluesE (L) as functions of the box length. More precisely, assume that the radial
part of the s-wave Schdinger equation is

2
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with the boundary condition at the origin (regular soluticih)0) = 0. Mandelshtanet al
[1] solved equation (1) with the boundary conditichg(0) = ®; (L) = 0. The eigenvalues
E(L) decrease with. according to

IE(L) _ PP(L)
oL fOLCD(r)Zdr-

Although always negative, the gradient of equation (2) changes dramatically Btienis
close to one of the resonance energigg, of equation (1). In fact, since the resonance
states are localized in some region of space (typically a potential well with a penetrable
barrier) the absolute value of the gradient is considerably small wtt@n ~ Ex. This
fact is referred to astabilization of the resonance energy.

To determine the density of resonance states Mandelstttahil] averaged the density
of states

)

pL(E) =) S[E;(L) — E] €)
J

where E; (L) are the eigenvalues of the caged model, in a wide regioh eélues, so as
to obtain a continuous function &:
L+AL/2

E)= " (E)dL’. 4
(oL(E)) AL Jayo pr (E) 4)
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This averaging was inspired by the work of Kim and Ezra [2]. Finally, by using properties
of Dirac’s delta function they rewrote equation (4) as

1 E; (L)t
(pL(E)) = -— [ ! } 5
L AL Xj: T P ©)

where the sum in equation (5) includes only the eigenvaltjgs’) satisfyingE; (L") = E
in the intervalL — AL/2 < L' < L + AL/2 chosen for averaging.

The rationale behind the last transformation is that, according to [1], equation (5) is less
costly to evaluate than equation (4).

Later [3], the method was modified to deal directly with the eigenphase sum, and
applied to the study of the van der Waals complex NelCl [4]. Very recently, Salzgeber
and coworkers [5] realized the importance of properly removing the background phase to
simplify the identification of resonances.

The method to find the position and width of the resonances consists of collecting
information from a large set of values df in the range L — AL/2,L + AL/2] and
constructing a histogram representing the averaged density of states [1]. One obtains the
parameters of the resonance from a least-square fit of the histogram to a Lorentzian function

C

(E— Eg)?+T1?%/4
plus a background. The procedure requires a large number of matrix diagonalizations to
build up the distribution of resonances. The Hamiltonian matrix is usually constructed by
using a set of basis functions (typically sinusoidal) which vanish at both ends of the box.

The purpose of this note is to show that the process of accumulating information to
build up the histogram may be carried owdry efficientlyby using equation (4) instead
of equation (5), if the Scldinger equation is discretized by the simple replacement
82/3r?> — 52/ h? (8 being the centred difference operator), because of the special properties
of the resulting Sturm sequences.

After this transformation there results a tridiagonal matrix with diagonal elements

2
T n?

and all upper-diagonal elements are equabge= —1/h%. Hereh is the constant step of
integration andV, = V (kh) is the potential function at the discretization point.

From a symmetric tridiagonal matrix one can construcktarm sequenc¢s, 7] for
the polynomialsp,(E) = det(T, — EI), whereT, is the matrix with the first- rows and
columns, and is the identity matrix of the same dimension. One easily verifies that

pr(E) = (a, — E)py—1(E) — bZ_ypr—2(E).

This sequence ignreducedbecause the off-diagonal elements are non-zero. The important
property of this sequence is that the number of zeros to the Idit efjuals the number of
changes of sign of the sequence

{po(E), p1(E), ..., pr(E)}.

Calling v, (E) the number of such sign changes, the number of eigenvalues between two
given valuest; and E5 is |v,(E1) — v.(E2)|. This method is especially well suited to find
the distribution or density of eigenvalues as a functiortof

For an efficient evaluation of theumulative distribution related to equation (4) one
proceeds by storing the number(E) at eachr, which corresponds to a box length

Pr(E) =

ak + Vi
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Figure 1. Histogram representing the averaged density of resonance states for the Hamiltonian
model. The calculation correspondsio= 13 andAL = 6.

L, = rh, along a single evaluation of the Sturm sequence up to a valué,gf given
by L + AL = Nmaxh. The cumulative number of eigenvalues is
Ninax
> I(E) = v (E + AE)|. (6)
7=Nmin
The evaluation of the Sturm sequence involvesVRy, flops, so the determination of a
histogram withNyin bins involves QNmaxNpin) flops only.

We have used this algorithm to determine an s-wave resonance of the Hamiltonian

H = —V?/24+ 752 exp(—r) au (7

This simple model is a reference problem for the determination of resonances (see [1], and
also [8,9]). Figure 1 shows the distribution of eigenvalues correspondihg=dl6 au and
AL = 6 au, withNpnax = 30000, corresponding to the average of around 8000 distributions.
To give an idea of the efficiency of the method we mention that the determination of the
histogram took oyl 7 s in aPentium at 60 MHz. The least-squares fit of the Lorentzian
gave Ex = 3.4284 andl’ = 0.0255. These results are in agreement with previous ones
[1,8,9]. One may improve the results by a Richardson extrapolation that requires repeated
calculation with different mesh stefs

It was suggested by one of the referees to test this method on potentials with singularities
or with discontinuities. So we considered the potential

(p(E)) ~

AEAL

r—>b
V() = 30ﬁ exp(—r) (8)

which has a discontinuous derivativerat= b. This potential has recently been studied by
Cizek and Ho#itek [10] for solving the Lippmann—Schwinger differential equation and also
the equivalent integral equation. Note that in this case the kinetic energy pakagi.e.
without the factor of% from equation (7)). The resonance distributions obtained by us for
two values ofp = 0.40 andb = 0.65 are shown in figure 2.

The first case presents a broad resonance wjth= 8.03 andI" = 0.93. The energy
of the resonance is slightly smaller than the maximum of the potential. The second case
shows a narrow resonance witfy = 0.9362 andl’ = 0.00011. Both results agree with
the values obtained in [10], which for comparison should be multiplied by 2 [11]. The
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Figure 2. Histogram representing the averaged density of resonance states for the discontinuous
potential (equation (8)). The calculation was carried out frbin= 15 up toL, = 65, with a

total of 50000 samples. The left-hand figure shows the obtained density (jigsaw line showing
a peak), the Lorentzian fit (smooth line) and also the free density.

conclusion is that the discontinuity does not affect the accuracy of the results. The same
conclusion was drawn from the singular potential

exp(—4r) N )LeX[X—r)
r r

V(r) = —100 (®)]

also considered in [10] (due to a printing error, this equation was missed in [10]).

However, the presence of very broad resonances has drawn our attention to the
importance of the background. The left plot in figureti2=£ 0.40) shows a characteristic
jigsaw pattern. The actual resonance appears as a bump on top of a jigsaw background,
which on average behaves asJ/iE [1]. The staircase pattern is not a consequence of the
numerical approximation, but of the finite size of the box enclosing the system.

Going back to equation (5), in which for a free particle

2.2
Jj
Ej(L) = N (10)
one may easily obtain the background density distribution
T
po(E) = W[kM(kM + 1) — ky(ky + D] (11)

where ky, (k,) is the largest (smallest) integer less (greater) tiar+- AL/2)VE/x

((L — AL/2)s/(E)/7). Consequently, each time these quantities cross an integer value
it results in a step in the distribution. In the left-hand plot of figure 2, such discontinuities
appear att = 6.075 6.316 6.562 ..., as follows fromL + AL /2 = 65 which arises from

the largest box considered. On the other hand, narrow resonances may lay within a step,
without any special behaviour, as in the right-hand plot of figurg 2 0.65) or in figure 1.
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