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Abstract. By using properties of the Sturm sequences related to tridiagonal matrices we
describe a very efficient algorithm to determine the density of resonance states based on the
stabilization method.

In a recent paper Mandelshtamet al [1] calculated the density of resonance states by
enclosing the system in a box of length,L, and studying the behaviour of the energy
eigenvaluesE(L) as functions of the box lengthL. More precisely, assume that the radial
part of the s-wave Schrödinger equation is[

− ∂
2

∂r2
+ V (r)

]
9(r) = E9(r) (1)

with the boundary condition at the origin (regular solution)9(0) = 0. Mandelshtamet al
[1] solved equation (1) with the boundary conditions8L(0) = 8L(L) = 0. The eigenvalues
E(L) decrease withL according to

∂E(L)

∂L
= − 8′ 2L (L)∫ L

0 8(r)
2 dr

. (2)

Although always negative, the gradient of equation (2) changes dramatically whenE(L) is
close to one of the resonance energies,ER, of equation (1). In fact, since the resonance
states are localized in some region of space (typically a potential well with a penetrable
barrier) the absolute value of the gradient is considerably small whenE(L) ' ER. This
fact is referred to asstabilization of the resonance energy.

To determine the density of resonance states Mandelshtamet al [1] averaged the density
of states

ρL(E) =
∑
j

δ[Ej(L)− E] (3)

whereEj(L) are the eigenvalues of the caged model, in a wide region ofL values, so as
to obtain a continuous function ofE:

〈ρL(E)〉 = 1

1L

∫ L+1L/2

L−1L/2
ρL′(E) dL′. (4)
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This averaging was inspired by the work of Kim and Ezra [2]. Finally, by using properties
of Dirac’s delta function they rewrote equation (4) as

〈ρL(E)〉 = 1

1L

∑
j

[
∂Ej (L

′)
∂L′

]−1

Ej (L′)=E
(5)

where the sum in equation (5) includes only the eigenvaluesEj(L
′) satisfyingEj(L′) = E

in the intervalL−1L/2< L′ < L+1L/2 chosen for averaging.
The rationale behind the last transformation is that, according to [1], equation (5) is less

costly to evaluate than equation (4).
Later [3], the method was modified to deal directly with the eigenphase sum, and

applied to the study of the van der Waals complex NeICl [4]. Very recently, Salzgeber
and coworkers [5] realized the importance of properly removing the background phase to
simplify the identification of resonances.

The method to find the position and width of the resonances consists of collecting
information from a large set of values ofL in the range [L − 1L/2, L + 1L/2] and
constructing a histogram representing the averaged density of states [1]. One obtains the
parameters of the resonance from a least-square fit of the histogram to a Lorentzian function

ρR(E) = C

(E − ER)2+ 02/4

plus a background. The procedure requires a large number of matrix diagonalizations to
build up the distribution of resonances. The Hamiltonian matrix is usually constructed by
using a set of basis functions (typically sinusoidal) which vanish at both ends of the box.

The purpose of this note is to show that the process of accumulating information to
build up the histogram may be carried outvery efficientlyby using equation (4) instead
of equation (5), if the Schrödinger equation is discretized by the simple replacement
∂2/∂r2→ δ2/h2 (δ being the centred difference operator), because of the special properties
of the resulting Sturm sequences.

After this transformation there results a tridiagonal matrix with diagonal elements

ak = 2

h2
+ Vk

and all upper-diagonal elements are equal tobk = −1/h2. Hereh is the constant step of
integration andVk = V (kh) is the potential function at the discretization point.

From a symmetric tridiagonal matrix one can construct aSturm sequence[6, 7] for
the polynomialspr(E) = det(Tr − EI), whereTr is the matrix with the firstr rows and
columns, andI is the identity matrix of the same dimension. One easily verifies that

pr(E) = (ar − E)pr−1(E)− b2
r−1pr−2(E).

This sequence isunreduced, because the off-diagonal elements are non-zero. The important
property of this sequence is that the number of zeros to the left ofE equals the number of
changes of sign of the sequence

{p0(E), p1(E), . . . , pr(E)}.
Calling νr(E) the number of such sign changes, the number of eigenvalues between two
given valuesE1 andE2 is |νr(E1)− νr(E2)|. This method is especially well suited to find
the distribution or density of eigenvalues as a function ofE.

For an efficient evaluation of thecumulativedistribution related to equation (4) one
proceeds by storing the numberνr(E) at eachr, which corresponds to a box length



An improved algorithm to determine the density of resonance states3103

Figure 1. Histogram representing the averaged density of resonance states for the Hamiltonian
model. The calculation corresponds toL = 13 and1L = 6.

Lr = rh, along a single evaluation of the Sturm sequence up to a value ofNmax given
by L+1L = Nmaxh. The cumulative number of eigenvalues is

〈ρ(E)〉 ≈ 1

1E1L

Nmax∑
r=Nmin

|νr(E)− νr(E +1E)|. (6)

The evaluation of the Sturm sequence involves O(Nmax) flops, so the determination of a
histogram withNbin bins involves O(NmaxNbin) flops only.

We have used this algorithm to determine an s-wave resonance of the Hamiltonian

H = −∇2/2+ 7.5r2 exp(−r) au. (7)

This simple model is a reference problem for the determination of resonances (see [1], and
also [8, 9]). Figure 1 shows the distribution of eigenvalues corresponding toL = 16 au and
1L = 6 au, withNmax= 30 000, corresponding to the average of around 8000 distributions.
To give an idea of the efficiency of the method we mention that the determination of the
histogram took only 7 s in aPentium at 60 MHz. The least-squares fit of the Lorentzian
gaveER = 3.4284 and0 = 0.0255. These results are in agreement with previous ones
[1, 8, 9]. One may improve the results by a Richardson extrapolation that requires repeated
calculation with different mesh stepsh.

It was suggested by one of the referees to test this method on potentials with singularities
or with discontinuities. So we considered the potential

V (r) = 30
r − b√|r − b| exp(−r) (8)

which has a discontinuous derivative atr = b. This potential has recently been studied by
C̆ı́z̆ek and Hoŕac̆ek [10] for solving the Lippmann–Schwinger differential equation and also
the equivalent integral equation. Note that in this case the kinetic energy part is−∇2 (i.e.
without the factor of1

2 from equation (7)). The resonance distributions obtained by us for
two values ofb = 0.40 andb = 0.65 are shown in figure 2.

The first case presents a broad resonance withER = 8.03 and0 = 0.93. The energy
of the resonance is slightly smaller than the maximum of the potential. The second case
shows a narrow resonance withER = 0.9362 and0 = 0.000 11. Both results agree with
the values obtained in [10], which for comparison should be multiplied by 2 [11]. The
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Figure 2. Histogram representing the averaged density of resonance states for the discontinuous
potential (equation (8)). The calculation was carried out fromL1 = 15 up toL2 = 65, with a
total of 50 000 samples. The left-hand figure shows the obtained density (jigsaw line showing
a peak), the Lorentzian fit (smooth line) and also the free density.

conclusion is that the discontinuity does not affect the accuracy of the results. The same
conclusion was drawn from the singular potential

V (r) = −100
exp(−4r)

r
+ λexp(−r)

r
(9)

also considered in [10] (due to a printing error, this equation was missed in [10]).
However, the presence of very broad resonances has drawn our attention to the

importance of the background. The left plot in figure 2 (b = 0.40) shows a characteristic
jigsaw pattern. The actual resonance appears as a bump on top of a jigsaw background,
which on average behaves as 1/

√
E [1]. The staircase pattern is not a consequence of the

numerical approximation, but of the finite size of the box enclosing the system.
Going back to equation (5), in which for a free particle

Ej(L) = j2π2

L2
(10)

one may easily obtain the background density distribution

ρ0(E) = π

41LE3/2
[kM(kM + 1)− km(km + 1)] (11)

where kM (km) is the largest (smallest) integer less (greater) than(L + 1L/2)√E/π
((L − 1L/2)√(E)/π ). Consequently, each time these quantities cross an integer value
it results in a step in the distribution. In the left-hand plot of figure 2, such discontinuities
appear atE = 6.075, 6.316, 6.562, . . . , as follows fromL+1L/2= 65 which arises from
the largest box considered. On the other hand, narrow resonances may lay within a step,
without any special behaviour, as in the right-hand plot of figure 2 (b = 0.65) or in figure 1.

Acknowledgments

This work was supported by DGICyT under contract Nb. PB92–0820 and by the EEC
network Nb. ERBCHRXCT940456. FMF also acknowledges theDirecció General
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